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Abstract— Spatial filters suppress noise in an image by making each pixel’s intensity roughly consistent with those of its nearest 
neighbours. Median Filter (MF) is an example of spatial filters which replaces each pixel with the median of its nearest neighbours. MF 
suppresses noise in any pixel which is affected by noise during image acquisition. However, MF adds noise to noise free pixels. An 
adaptive median filtering scheme which implements median filtering process only on pixels which are detected to be noisy is therefore 
desirable. An existing Noise Adaptive Fuzzy Switching Median Filter (NAFSMF) with two noise detection stages, two filtering stages and six 
fuzzy tuning parameters is somehow complex. A Texture Synthesis Based Adaptive Median Filter (TSBAMF) with a single tuning parameter 
is proposed. TSBAMF compares the actual intensity of each pixel with its texture synthesis’ predicted intensity which is based on its 
nearest neighbours; the pixel is detected to be noisy if the absolute difference between the two values is greater than a tuning parameter. 
TSBAMF applies median filtering to only pixels detected to be noisy. For Salt and Pepper Noise (SPN) and Random Valued Impulse Noise 
(RVIN), TSBAMF is found to offer better image filtering/restoration and better visual quality compared with both MF and NAFSMF. TSBAMF 
satisfactorily restore corrupted images with improved Peak Signal to Noise Ratio (PSNR) and high Gain for noise densities up to 90%. 
Index Terms— Adaptive Median Filter, Gain, Median Filter, Noise, Noise density, Peak Signal to Noise Ratio, Pixel’s Neighbours, Texture 
Synthesis.   

——————————      —————————— 
1 INTRODUCTION                                                                     

PATIAL filters are used to suppress various types of noise in digital images [1], [2], [3], [4], [5], [6]. Like other types of signals, an acquired image g(m,n) usually contains        departures from the ideal or true image f(m,n). Such            departures are referred to as noise [3], [7], [8]. Noise η(m,n) is added to the true image during image acquisition as            illustrated in Fig. 1 and (1) [1], [7], [8]. Examples of sources of noise are variations in the detector sensitivity, environmental variations, discrete nature of radiation, transmission or    quantization errors. There are many types of noise. Impulse noise is considered in this work. Impulse noise can be        classified mainly in two categories; Salt and Pepper Noise (SPN) [9] and Random Valued Impulse Noise (RVIN) [10]. 
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Spatial filtering deduce an estimate fe(m,n) of the true image from the acquired image g(m,n) with the aid of convolution. A function of values of g in a predefined neighborhood of (m,n) is used to determine the value of fe at (m,n) as described in (2) [1], [2], [7], [8].  

),(),(),( nmhnmgnmfe                                                   (2) 
The filter function h(m,n) is known as the kernel. The    kernel is usually a square matrix with size 3 by 3 or 5 by 5 or 7 by 7 or 9 by 9. 3 by 3 is preferred as larger kernel sizes result in blurring [11]. Among the different types of kernel, Median Filter (MF) kernel is adjudged to be the best as it has high noise suppression capability and high computation efficiency [7], [8], [11].  Spatial filtering is referred to as local processing because it makes each pixel’s intensity roughly consistent with those of its nearest neighbours. This process is applied to every pixel in the image. Spatial filtering suppresses noise in any pixel which is affected by noise during image acquisition. However,      spatial filtering adds noise to noise free pixels. An adaptive spatial filtering scheme which implement spatial filtering   process only on pixels which are detected to be noisy is    therefore desirable.   In [12], Govindan and Saravanakumar proposed Noise Adaptive Fuzzy Switching Median Filter (NAFSMF) which involves two noise detection stages and two filtering stages. The first noise detection stage involves comparing each pixel with its 120 nearest neighbours within an 11 by 11 window neighbourhood with the aid of three fuzzy tuning parameters. Second noise detection stage involves comparing each pixel with its 24 nearest neighbours within a 5 by 5 window    neighbourhood with the aid of another set of three fuzzy    tuning parameters. First filtering stage involves window neighbourhood ranging from 3 by 3 to 9 by 9 while second filtering stage involves a 5 by 5 window neighbourhood. NAFSMF is rather complex.   In this work, Texture Synthesis Based Adaptive Median  Filter (TSBAMF) is proposed. A texture synthesis method starts from a sample image and attempts to produce a texture with a visual appearance similar to that sample [13], [14], [15]. Potential applications of texture synthesis include occlusion fill-in, inpainting, and compression.  
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Fig. 1. Model of Image Acquisition.  
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In this proposed method, noise detection stage involves an 11 by 11 window neighbourhood and the noise suppression stage is limited to a 3 by 3 window neighbourhood. In the  detection stage, each pixel intensity Ip is noted. Texture      Synthesis predicts Its as the intensity of the pixel based on   information from 40 of its nearest neighbours within an 11 by 11 window neighbourhood. If the absolute difference between Ip and Its is greater than a tuning parameter cc, the pixel is  considered to be noisy. In the filtering stage, only pixels which are found to be noisy are replaced by the median of its nearest neighbours within a 3 by 3 window neighbourhood. For high density noisy images, the process is repeated once or twice.  Test images [16] are corrupted with varying densities (d) of Salt and Pepper Noise (SPN) and Random Valued Impulse Noise (RVIN) [11]. These test images are filtered with the  proposed TSBAMF. TSBAMF is compared with MF [11] and NAFSMF [12].  
2 Texture Synthesis Based Adaptive Median    Filter (TSBAMF)   
2.1 First Stage: Texture Synthesis based Noise Detection 
Each of the colour components of every pixel in the input   image g is checked for noise presence. Input noisy image g is an M by N by 3 matrix (3D) which is like three M by N        matrices (2D). These three 2D matrices are scanned for noise presence one after the other. A texture synthesis method    developed in [17] is adapted for noise detection. Fig. 2 illustrates the texture synthesis method. The current pixel being scanned for noise is labelled as p and is painted blue. It’s at location (m,n) and its actual intensity value in g is Ip. The goal of texture synthesis is to guess or predict a value Its of the pixel p based on the intensities of its neighbours. The intensity of a pixel is usually close to the intensities of its neighbours except at edges.  An 11 by 11 window neighbourhood is selected with p at the center as shown in Fig. 2(a). Eight directions are selected: θ = 0o, 45 o, 90 o, 135 o, 180 o, 225 o, 270 o, and 315 o. These are     vertical, horizontal and diagonal directions. Five neighbouring pixels nbp1, nbp2, nbp3, nbp4 and nbp5 are selected along each direction θ; nbp1 being the closest neighbour to p as   illustrated in Fig. 2(b). I1, I2, I3, I4, and I5 are the intensities of the five neighbouring pixels respectively.  Colours are treated as fluid that flow or diffuse from the neighbouring pixels to the pixel of interest along a direction θ: starting from nbp5 through nbp4, through nbp3, through nbp2 and through nbp1 to give I0 at p. Its is the weighted average of the Io’s in the eight directions. Only 40 neighbouring pixels along the selected directions out of 120 neighbouring pixels participate in the texture synthesis process. The addresses of the 40 participating neighbouring pixels relative to the        location (m,n) of p are listed in Table 1.   The pattern of flow along each direction is studied and  limiting factor lf and weight wg are applied to obtain the         contribution of the directional flow to the pixel being          synthesised. lf and wg are determined based on Fig. 2(b) which shows the neighbouring pixels along a direction.  Four 

different cases are identified.                                                               
 
2.1.1 Case 1: I1 ≥ I2 ≥ I3 ≥ I4 ≥ I5 or I1 < I2 < I3 < I4 < I5 (Continuous Trend I5 to I1)   
The average of dIe, dId and dIc should give dIb if the flow is 
effective. However, 3
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given as 
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dIa is subject to some limit. 
If dIa ≤ ck, 4wg , adIII  10 .                                           (4) 
If dIa > ck, 1wg , 10 II  .                                                       (5)  
where ck is a limiting constant. Optimum value of ck has been obtained as 4 in [17].  

 
(a) 11 by 11 window neighbourhood  

 
(b) Five participating neighbouring pixels along a direction θ and the pixel p(m,n) under consideration  
Fig. 2. Texture Synthesis. 

    
 Ip is the actual intensity of p in g. I0 is the intensity at p contributed by neighbouring pixels along a direction θ. Its is the texture synthesis predicted intensity of p. Its is the weighted average of I0’s in the eight directions.   
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2.1.2 Case 2: I1 ≥ I2 ≥ I3 ≥ I4 < I5 or I1 < I2 < I3 < I4 > I5 (Continuous Trend I4 to I1 only)   
I5 is neglected. The average of dId and dIc should give dIb if the 
flow is effective. However, 2

cdbav
dIdIdI  . The ratio of dIb 

to the average of dId and dIc is termed limiting factor which is 
given as 

bav
b

dI
dIlf   and is used to determine dIa as 

3
)( bcda

dIdIdIlfdI                                                         (6) 
dIa is subject to some limit. 
If dIa ≤ ck, 3wg , adIII  10 .                                           (7) 
If dIa > ck, 1wg , 10 II  .                                                       (8)  
2.1.3 Case 3: I1 ≥ I2 ≥ I3 < I4 or I1 < I2 < I3 > I4 (Continuous Trend I3 to I1 only)   
I5 and I4 are neglected. dIc should should be equal to dIb if the 
flow is effective. However, this may not be the case. The ratio 
of dIb to dIc is termed limiting factor which is given as 

c
b

dI
dIlf   and is used to determine dIa as 

2
)( bca

dIdIlfdI                                                                     (9) 
dIa is subject to some limit. 
If dIa ≤ ck, 2wg , adIII  10 .                                         (10) 
If dIa > ck, 1wg , 10 II  .                                                     (11)  
 

2.1.4 Case 3: I1 ≥ I2 < I3 or I1 < I2 > I3 (Continuous Trend I2 to I1 only)   
I5, I4 and I3 are neglected.  

1wg , 10 II  .                                                                        (12) 
2.1.5 Averaging and Noise Detection Verdict   
I0 and wg for the eight directions are determined. The texture synthesis predicted intensity Its of the pixel p under             consideration is obtained as the weighted average of the I0’s in the eight directions as in (13). Its is then compared with Ip and an indicator s is set to 0 or 1 as in (14). If the absolute           difference between Its and Ip is greater than a tuning parameter cc, p is considered to be noisy and s is set to 1. Otherwise, p is        considered to be noise free and s is set to 0. After some trials, tuning parameter cc=20 is found to be suitable. 
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Percentage noisy pixels detected is given as dd and is      obtained as in (15). dd can then be compared to the known actual percentage noise density d of the noisy image g. d may not be known. dd may not be exactly equal to d as its possible that some noisy pixels are not detected and some noise free pixels are erroneously detected as noisy. 
%3MN

100 x     PixelsNoisyDetectedofNumberdd       (15) 
2.2 Second Stage: Noise Suppression 
Each colour component of the filtered image fe(m,n) is         obtained from the corresponding colour component of g(m,n) and s(m,n) as in (16). For detected noisy pixel (s=1), median of the values of g in a 3 by 3 window neighbourhood of (m,n) is used as the value of fe at (m,n). Any noiseless pixel (s=0) in g is simply copied into fe. This is an adaptive median filter as the filtering is applied to only detected noisy pixels. The complete TSBAMF scheme is first stage and second stage. 








0n)s(m, if     n)g(m,

1n)s(m, if  n)g(m, of odneighbouho
  window3by  3in  sintensitie ofmedian 

),( nmfe                    (16) 

2.3 Two or Three Iterations for High Noise Density Input Images 
For high noise densities, percentage noisy pixels detected (dd) may be far less than the actual noise density (d) in g. The    reality is that the possible presence of noise in some of the neighbouring pixels along the eight directions may affect noise detection capability. It’s, therefore, recommended to repeat the complete TSBAMF scheme once or twice with cc=15 for input 

TABLE 1 NEIGHBOURING CONTRIBUTING PIXELS ALONG EIGHT DIFFERENT DIRECTIONS OF FLOW 

0O 45 O 90 O 135 O
p (m,n) (m,n) (m,n) (m,n)

nbp1 (m, n+1) (m-1, n+1) (m-1, n) (m-1, n-1)
nbp2 (m, n+2) (m-2, n+2) (m-2, n) (m-2, n-2)
nbp3 (m, n+3) (m-3, n+3) (m-3, n) (m-3, n-3)
nbp4 (m, n+4) (m-4, n+4) (m-4, n) (m-4, n-4)
nbp5 (m, n+5) (m-5, n+5) (m-5, n) (m-5, n-5)

180 O 225 O 270 O 315 O
p (m,n) (m,n) (m,n) (m,n)

nbp1 (m, n-1) (m+1, n-1) (m+1, n) (m+1, n+1)
nbp2 (m, n-2) (m+2, n-2) (m+2, n) (m+2, n+2)
nbp3 (m, n-3) (m+3, n-3) (m+3, n) (m+3, n+3)
nbp4 (m, n-4) (m+4, n-4) (m+4, n) (m+4, n+4)
nbp5 (m, n-5) (m+5, n-5) (m+5, n) (m+5, n+5)

Pixel Name Directions  (θ)

Pixel Name Directions (θ)
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images with high noise densities.  fe after the first TSBAMF scheme (1st iteration with cc = 20) is re-sent as input image g and the complete TSBAMF scheme is repeated  with cc = 15 (2nd iteration). fe after the second TSBAMF scheme is re-sent as input image g and the complete TSBAMF scheme is repeated with cc=15 (3rd iteration). The percentage noisy pixels detected (dd) after the 2nd iteration is the cumulative dd for 1st and 2nd iterations. Similarly, the    percentage noisy pixels detected (dd) after the 3rd iteration is the cumulative dd for 1st, 2nd and 3rd iterations. 
2.4 Performance Metrics 
The Peak Signal to Noise Ratio (PSNR) is a measure of the  degree of corruption or degradation of an image with noise or/and blurring [8], [11], [18]. Equation (17) evaluates PSNRc which compares the corrupted input image g with the true image f. Equation (18) evaluates PSNRr which compares the filtered or recovered image fe with the true image f.             Subtracting PSNRc from PSNRr gives the Gain of the filter as in (19). Higher Gain indicates a higher degree of noise       suppression by the filter. A negative Gain indicates that the filter adds more noise to the corrupted image instead of    suppressing the noise in the image.  

  
















 
   

M

m

N

n t
tnmftnmgNM

PSNRc
1 1

3

1
2

2
10

),,(),,(3
1

255log10    (17) 

  
















 
   

M

m

N

n t
e tnmftnmfNM

PSNRr
1 1

3

1
2

2
10

),,(),,(3
1

255log10     (18) 

PSNRcPSNRrGain                                                               (19) 

3 RESULTS AND DISCUSSIONS 
3.1 Five Test Images 
Five test images [16] are selected to study the performance of the Texture Synthesis Based Adaptive Median Filter (TSBAMF). The test images are corrupted with Salt and     Pepper Noise (SPN) or Random Valued Impulse Noise (RVIN) with noise densities 5%, 10%, 15%, 20%, 40%, 50%, 60%, 70% and 90% [11]. 
3.2 TSBAMF Results 
The corrupted images were supplied to the TSBAMF as inputs one after the other. Three iterations were done for each test image. The results are summarised in Table 2 for SPN         corrupted images and Table 3 for RVIN corrupted images. The actual noise density (d), the detected noise density (dd), PSNRc of corrupted image, PSNRr of the filtered image and filtering Gain are recorded in the Tables 2 and 3. For lower actual noise densities d, detected noise density dd is usually greater than actual noise density d. For higher actual noise densities d, detected noise density dd is usually less than actual noise density d. As expected, cumulative    detected noise density dd after 3rd iteration is greater than dd 

after 2nd iteration which in turn is greater than dd after 1st  iteration.  For illustration, consider test image Lena corrupted with SPN with d=90% in Table 2. dd = 55.95% of all the pixels were detected to be noisy and filtered during the 1st iteration with Gain = 14.95 dB. For 2nd iteration, dd=62.27% which means that additional 6.32% (62.27%-55.95%) of all the pixels were detected to be noisy and filtered during the 2nd iteration and the Gain improved to 20.00 dB. For 3rd iteration, dd=65.67% which means that additional 3.40% (65.67%-62.27%) of all the pixels were detected to be noisy and filtered during the 3rd iteration and the Gain improved to 20.41 dB. This same trend is observed for other test images corrupted with SPN and RVIN and with various values of d in Tables 2 and 3            respectively. Tables 4 and 5 show some test images, corrupted test images and filtered images after 1st, 2nd and 3rd iterations for SPN and RVIN respectively. For lower actual noise densities d, 1st iteration alone is    sufficient and it gives the final TSBAMF results; highlighted with blue colour in Tables 2 and 3. 2nd and 3rd iterations are not useful as both PSNRr and Gain decreased; highlighted with yellow colour.  For medium actual noise densities d, 1st iteration alone is not sufficient; highlighted with pink colour in Tables 2 and 3. 2nd iteration is sufficient and it gives the final TSBAMF results; highlighted with blue colour. 3rd iteration is not useful as both PSNRr and Gain decreased; highlighted with yellow colour.  For higher actual noise densities d, 1st and 2nd iterations are not sufficient; highlighted with pink colour in Tables 2 and 3. 3rd iteration is sufficient and it gives the final TSBAMF results; highlighted with blue colour.  If going to the next iteration leads to reduction in PSNRr and Gain, then the current iteration is sufficient and the next     iteration is neither necessary nor useful. 
3.3 Comparison of TSBAMF Results with MF Results. 
For the five test images, the final TSBAMF results (highlighted with blue colour) extracted for SPN and RVIN from Tables 2 and 3 respectively are compared with MF results for SPN and RVIN extracted from Tables 1 and 4 of [11] respectively as presented in Fig. 3. TSBAMF is found to give higher PSNRr and Gain in all cases compared with MF.  The following three limitations of MF were recorded in [11]. For both SPN and RVIN, MF Gain increases with noise density d up to 40% and then reduces with further increase in noise density. Median filtering of RVIN corrupted images is satisfactory for noise densities up to the maximum of 40%. Median filtering of SPN corrupted images is found satisfactory for noise densities up to the maximum of 60%. TSBAMF is free of these three limitations. The Gain of TSBAMF increases with noise density d up to 90% as shown in Fig. 3. Filtering by TSBAMF is found satisfactory up to 90% noise density for both SPN and RVIN corrupted images. This is illustrated in Table 6 which shows the appearance of some of the filtered images for both TSBAMF and MF. TSBAMF gives better image             restoration and better visual quality compared with MF. Both TSBAMF and MF give higher Gain for SPN restoration     compared with RVIN restoration. 
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TABLE 2 TSBAMF RESULTS FOR SPN CORRUPTED IMAGES 

d % 5 10 15 20 40 50 60 70 90
PSNRc (dB) 22.99 20.03 18.30 17.07 14.22 13.33 12.59 11.99 11.05
dd % 6.52 10.21 13.88 17.48 30.82 36.81 42.31 47.38 55.95
PSNRr (dB) 38.99 38.00 37.18 36.47 33.80 32.35 30.71 29.03 26.00
Gain (dB) 16.00 17.97 18.88 19.40 19.58 19.01 18.12 17.04 14.95
dd % 10.94 14.55 18.16 21.78 35.14 41.26 47.01 52.50 62.27
PSNRr (dB) 37.30 36.68 36.09 36.68 34.12 33.43 32.83 32.20 31.05
Gain (dB) 14.31 16.65 17.79 19.60 19.90 20.10 20.24 20.21 20.00
dd % 14.09 17.66 21.24 24.87 38.23 44.38 50.15 55.77 65.67
PSNRr (dB) 36.81 36.25 35.74 36.25 33.92 33.30 32.79 32.24 31.45
Gain (dB) 13.82 16.23 17.44 19.18 19.70 19.97 20.20 20.25 20.41
d % 5 10 15 20 40 50 60 70 90
PSNRc (dB) 22.80 19.77 18.03 16.84 13.97 13.07 12.36 11.74 10.79
dd % 8.20 12.29 16.17 19.76 33.01 38.70 44.02 48.86 56.99
PSNRr (dB) 30.64 30.53 30.49 30.20 29.38 28.72 27.92 27.01 24.64
Gain (dB) 7.83 10.76 12.46 13.36 15.42 15.65 15.56 15.27 13.85
dd % 13.40 17.34 21.14 24.62 37.81 43.55 49.08 54.24 63.53
PSNRr (dB) 30.25 30.09 29.97 29.82 29.35 29.06 28.87 28.65 28.02
Gain (dB) 7.44 10.32 11.94 12.97 15.38 15.98 16.51 16.90 17.23
dd % 16.65 20.54 24.29 27.75 40.93 46.70 52.25 57.48 66.91
PSNRr (dB) 30.16 30.01 29.88 29.74 29.26 28.99 28.83 28.60 28.17
Gain (dB) 7.35 10.24 11.85 12.90 15.29 15.92 16.47 16.85 17.38
d % 5 10 15 20 40 50 60 70 90
PSNRc (dB) 22.90 19.95 18.22 17.03 14.15 13.25 12.53 11.93 10.97
dd % 10.96 14.19 17.42 20.59 32.97 38.72 43.95 48.87 57.41
PSNRr (dB) 28.39 28.31 28.15 28.10 27.31 26.75 26.15 25.41 23.58
Gain (dB) 5.49 8.36 9.93 11.07 13.16 13.50 13.61 13.48 12.61
dd % 20.74 23.92 27.12 30.30 42.79 48.71 54.23 59.54 69.41
PSNRr (dB) 27.93 27.82 27.68 27.56 27.06 26.79 26.61 26.33 25.81
Gain (dB) 5.03 7.87 9.46 10.53 12.91 13.55 14.08 14.40 14.84
dd % 28.74 31.81 34.98 38.14 50.52 56.44 62.02 67.42 77.48
PSNRr (dB) 27.75 27.64 27.51 27.38 26.89 26.65 26.46 26.21 25.81
Gain (dB) 4.84 7.69 9.28 10.36 12.74 13.40 13.92 14.28 14.84
d % 5 10 15 20 40 50 60 70 90
PSNRc (dB) 22.74 19.78 18.01 16.81 13.97 13.06 12.35 11.74 10.79
dd % 13.96 17.78 21.51 25.04 37.62 43.08 48.04 52.61 60.19
PSNRr (dB) 29.39 29.19 28.89 28.68 27.66 27.07 26.33 25.57 23.48
Gain (dB) 6.66 9.41 10.88 11.88 13.69 14.01 13.98 13.82 12.69
dd % 24.73 28.36 31.92 35.34 47.65 53.15 58.26 63.13 72.01
PSNRr (dB) 28.62 28.45 28.24 28.06 27.44 27.18 26.88 26.58 25.91
Gain (dB) 5.88 8.67 10.22 11.26 13.47 14.11 14.53 14.84 15.12
dd % 31.92 35.44 38.91 42.33 54.44 59.90 65.03 69.93 79.02
PSNRr (dB) 28.32 28.16 27.97 27.80 27.23 26.98 26.73 26.48 26.01
Gain (dB) 5.58 8.38 9.96 10.99 13.26 13.92 14.38 14.73 15.22
d % 5 10 15 20 40 50 60 70 90
PSNRc (dB) 23.04 20.09 18.36 17.15 14.28 13.36 12.67 12.07 11.11
dd % 30.71 33.57 36.32 38.93 48.38 52.63 56.24 59.56 65.24
PSNRr (dB) 23.59 23.48 23.36 23.23 22.70 22.40 22.08 21.65 20.72
Gain (dB) 0.55 3.39 5.00 6.07 8.41 9.04 9.41 9.57 9.61
dd % 49.71 52.59 55.32 57.88 67.76 72.33 76.28 80.20 87.45
PSNRr (dB) 23.10 22.99 22.90 22.80 22.43 22.27 22.10 21.93 21.60
Gain (dB) 0.06 2.91 4.54 5.65 8.14 8.91 9.43 9.85 10.49
dd % 61.25 64.05 66.68 69.16 79.00 83.61 87.65 91.76 99.39
PSNRr (dB) 22.87 22.77 22.69 22.60 22.25 22.11 21.95 21.81 21.52
Gain (dB) -0.17 2.68 4.33 5.45 7.97 8.75 9.28 9.73 10.42

Key: General final TSBAMF results: This iteration is sufficient
This iteration is not suffic ient. This iteration is not necessary 

Baboon         

House         

Test Image 

Boat        

Test Image 

Test Image 

Lena              

3rd 
iteration

2nd 
iteration

Test Image 

Pepper              

Test Image 

3rd 
iteration

1st 
iteration

2nd 
iteration

3rd 
iteration
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iteration

3rd 
iteration

1st 
iteration

1st 
iteration
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TABLE 3 TSBAMF RESULTS FOR RVINN CORRUPTED IMAGES 

d % 5 10 15 20 40 50 60 70 90
PSNRc (dB) 24.42 21.42 19.72 18.49 15.63 14.72 14.01 13.41 12.46
dd % 6.22 9.71 13.14 16.56 29.41 35.17 40.43 45.20 53.54
PSNRr (dB) 39.03 37.85 36.87 36.07 32.77 30.89 29.34 27.57 24.47
Gain (dB) 14.61 16.43 17.15 17.57 17.14 16.17 15.33 14.16 12.02
dd % 10.69 14.17 17.67 21.11 34.42 40.69 46.52 52.23 63.00
PSNRr (dB) 37.38 36.64 36.05 35.57 33.68 32.83 32.00 31.18 28.99
Gain (dB) 12.96 15.22 16.33 17.07 18.05 18.12 17.99 17.77 16.54
dd % 13.87 17.34 20.84 24.25 37.64 43.98 49.91 55.81 67.18
PSNRr (dB) 36.87 36.22 35.69 35.27 33.54 32.79 32.09 31.47 29.86
Gain (dB) 12.46 14.80 15.97 16.78 17.91 18.08 18.08 18.07 17.41
d % 5 10 15 20 40 50 60 70 90PSNRc (dB) 23.46 20.52 18.76 17.55 14.70 13.79 13.05 12.47 11.53dd % 8.18 12.12 16.05 19.82 33.34 39.33 44.73 49.28 57.31PSNRr (dB) 30.66 30.46 30.24 29.99 28.63 27.73 26.38 25.13 22.59Gain (dB) 7.19 9.94 11.47 12.44 13.93 13.94 13.33 12.66 11.06dd % 13.42 17.30 21.17 24.93 38.84 45.21 51.43 56.96 67.82PSNRr (dB) 30.26 30.11 29.93 29.75 29.12 28.76 28.28 27.76 26.43Gain (dB) 6.79 9.59 11.16 12.20 14.42 14.98 15.22 15.29 14.89dd % 16.69 20.53 24.35 28.11 42.02 48.46 54.81 60.55 72.22PSNRr (dB) 30.16 30.02 29.84 29.67 29.06 28.75 28.39 27.96 27.15Gain (dB) 6.70 9.50 11.08 12.12 14.36 14.96 15.33 15.50 15.62
d % 5 10 15 20 40 50 60 70 90PSNRc (dB) 25.50 22.52 20.79 19.58 16.72 15.83 15.09 14.48 13.57dd % 10.18 12.74 15.30 17.83 27.59 32.24 36.69 40.71 47.85PSNRr (dB) 28.38 28.24 28.12 27.94 27.03 26.48 25.90 25.13 23.63Gain (dB) 2.87 5.72 7.33 8.36 10.31 10.65 10.81 10.65 10.07dd % 20.00 22.54 25.12 27.69 37.73 42.69 47.49 52.11 60.62PSNRr (dB) 27.95 27.82 27.69 27.54 26.89 26.59 26.24 25.85 25.07Gain (dB) 2.44 5.30 6.90 7.95 10.17 10.76 11.15 11.36 11.51dd % 28.00 30.50 33.05 35.56 45.51 50.51 55.35 60.01 68.71PSNRr (dB) 27.76 27.63 27.51 27.37 26.75 26.46 26.12 25.77 25.14Gain (dB) 2.25 5.11 6.72 7.78 10.02 10.63 11.04 11.29 11.58
d % 5 10 15 20 40 50 60 70 90PSNRc (dB) 23.85 20.98 19.18 17.95 15.11 14.21 13.50 12.89 11.94dd % 13.70 17.26 20.86 24.29 36.27 41.36 45.97 50.26 57.48PSNRr (dB) 29.40 29.12 28.90 28.55 27.24 26.38 25.44 24.38 22.14Gain (dB) 5.55 8.14 9.72 10.60 12.12 12.16 11.93 11.49 10.20dd % 24.52 27.94 31.44 34.80 46.87 52.39 57.53 62.60 72.22PSNRr (dB) 28.63 28.42 28.26 28.04 27.29 26.90 26.46 25.97 24.78Gain (dB) 4.78 7.44 9.07 10.09 12.18 12.68 12.96 13.08 12.84dd % 31.73 35.07 38.50 41.81 53.75 59.38 64.58 69.86 80.10PSNRr (dB) 28.33 28.14 28.00 27.79 27.13 26.76 26.41 26.02 25.14Gain (dB) 4.47 7.16 8.81 9.85 12.01 12.55 12.91 13.12 13.20
d % 5 10 15 20 40 50 60 70 90PSNRc (dB) 24.43 21.44 19.74 18.55 15.65 14.74 14.06 13.43 12.49dd % 30.29 32.89 35.23 37.63 46.34 50.23 53.67 56.81 62.39PSNRr (dB) 23.59 23.47 23.33 23.20 22.55 22.16 21.77 21.20 20.09Gain (dB) -0.84 2.02 3.59 4.65 6.90 7.42 7.72 7.77 7.60dd % 49.30 51.91 54.26 56.66 65.83 70.17 74.08 78.07 85.50PSNRr (dB) 23.11 23.02 22.91 22.82 22.38 22.16 21.95 21.66 21.03Gain (dB) -1.32 1.57 3.17 4.27 6.73 7.42 7.90 8.23 8.54dd % 60.84 63.34 65.68 67.97 77.06 81.48 85.54 89.78 97.71PSNRr (dB) 22.88 22.80 22.70 22.62 22.23 22.03 21.84 21.59 21.07Gain (dB) -1.55 1.36 2.96 4.07 6.58 7.29 7.78 8.16 8.58

Key: General final TSBAMF results: This iteration is suffic ient
This iteration is not suffic ient. This iteration is not necessary 
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TABLE 4 SOME TSBAMF RESULTS FOR LENA TEST IMAGE WITH SPN 

Lena (Original) 1st Iteration: dd = 55.85% 2nd Iteration: dd = 62.27% 3rd Iteration: dd = 65.67%55.85% of all the pixels 6.32% of all the pixels 3.40% of all the pixels detected to be noisy detec ted to be noisy detected to be noisyPSNRr = 26.00 dB PS NRr = 31.05 dB PSNRr = 31.45 dBGain = 14.95 dB Gain = 20.00 dB Gain = 20.41 dB

Lena with 50% SPN 1st Iteration: dd = 36.81% 2nd Iteration: dd = 41.26% 3rd Iteration: dd = 44.38%PSNRc = 13.33 dB 36.81% of all the pixels 4.45% of all the pixels 3.11% of all the pixels  detected to be noisy detec ted to be noisy detected to be noisy PSNRr = 32.35 dB PS NRr = 33.43 dB PSNRr = 33.30 dBGain = 19.01 dB Gain = 20.10 dB Gain = 19.97 dB

Lena with 5% SPN 1st Iteration: dd = 6.52% 2nd Iteration: dd = 10.94% 3rd Iteration: dd = 14.08%PSNRc = 22.99 dB 6.52% of all the pixels 4.41% of all the pixels 3.16% of all the pixels detected to be noisy detec ted to be noisy detected to be noisy PSNRr = 38.99 dB PS NRr = 37.30 dB PSNRr = 36.81 dBGain = 16.00 dB Gain = 14.31 dB Gain = 13.82 dB
This iteration is not final TSBAMF results: This iteration is not useful sufficient. This iteration is suffic ient

                   

Lena with 90% SPN 
PS NRc = 11.05 Db

Key: General  

TABLE 5 SOME TSBAMF RESULTS FOR BABOON TEST IMAGE WITH RVIN  

Baboon (Original) 1st Iteration: dd = 62.39% 2nd Iteration: dd = 85.50% 3rd Iteration: dd = 97.71%62.39% of all the pixels 23.11% of all the pixels 12.21% of all the pixels detected to be noisy detec ted to be noisy detected to be noisy PSNRr = 20.09 dB PSNRr = 21.03 dB PSNRr = 21.07 dBGain = 7.60 dB Gain = 8.54 dB Gain = 8.58 dB

1st Iteration: dd = 53.67% 2nd Iteration: dd = 74.08% 3rd Iteration: dd = 85.54%53.67% of all the pixels 20.41% of all the pixels 11.46% of all the pixels detected to be noisy detec ted to be noisy detected to be noisy PSNRr = 21.77 dB PSNRr = 21.95 dB PSNRr = 21.84 dBGain = 7.72 dB Gain = 7.90 dB Gain = 7.78 dB

1st Iteration: dd = 32.89% 2nd Iteration: dd = 51.91% 3rd Iteration: dd = 63.34%32.89% of all the pixels 19.01% of all the pixels 11.43% of all the pixels detected to be noisy detec ted to be noisy detected to be noisy PSNRr = 23.47 dB PSNRr =23.02 dB PSNRr = 22.80 dBGain = 2.02 dB Gain = 1.57 dB Gain = 1.35 dB
This iteration is not final TSBAMF results: This iteration is not useful sufficient. This iteration is sufficientGeneral

                   

Baboon with 90% 
RVIN PSNRc = 12.49 

dB

Baboon with 60% 
RVIN PSNRc = 14.06 

dB

Baboon with 10% 
RVIN PSNRc = 21.44 

dB
Key:

 
     (a) Lena with SPN                                                          (b) Lena with RVIN                                                                        

 
    (c) Pepper with SPN                                                        (d) Pepper with RVIN                                                                        
Fig. 3 Comaprison of TSBAMF and MF [11] results for five test images with SPN and RVIN. 
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     (e) House with SPN                                                        (f) House with RVIN  

 
      (g) Boat with SPN                                                           (h) Boat with RVIN 

     
     (i) Baboon with SPN                                                        (j) Baboon with RVIN 
Fig. 3 (Continued) Comaprison of TSBAMF and MF [11] results for the five test images with SPN and RVIN. 
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3.4 Comparison of TSBAMF Results with NAFSMF Results. 
For Lena 512 by 512 test image, the final TSBAMF results (highlighted with blue colour) extracted for SPN and RVIN from Tables 2 and 3 respectively are compared with NAFSMF results for impulse noise extracted from Table 2 of [12] as shown in Table 7 and Fig. 4. TSBAMF is found to give higher PSNRr compared with NAFSMF. Thus, TSBAMF offer better restoration compared with NAFSMF. NAFSMF can restore corrupted image with noise density up to 60%.  TSBAMF can restore corrupted image with noise density up to 90%. 
4 CONCLUSION 
Texture Synthesis Based Adaptive Median Filter (TSBAMF) has been developed. TSBAMF applies median filtering to only pixels detected to be noisy. Noise detection is based on       Texture Synthesis approach.  Texture Synthesis Based Adaptive Median Filter (TSBAMF) is found to offer better image filtering/restoration and visual quality compared with Median Filter (MF) which applies   median filtering to all pixels. Texture Synthesis Based      

Adaptive Median Filter (TSBAMF) is less complex and offer better image filtering/restoration compared with an existing adaptive median filter which is known as Noise Adaptive Fuzzy Switching Median Filter (NAFSMF).  Satisfactory filtering by Noise Adaptive Fuzzy Switching Median Filter (NAFSMF) and Median Filter (MF) is limited to corrupted images with noise densities up to 60%. Texture  Synthesis Based Adaptive Median Filter (TSBAMF) can restore corrupted images with noise densities up to 90%. 
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